設為首頁 | 網站地圖 | 聯系方式 | 中國科學院
首頁 所況簡介 機構設置 科研成果 支撐平臺 研究生教育 創新文化 科學傳播 人才招聘
新聞中心
重要新聞
圖片新聞
科研動態
交流與培訓
綜合新聞
媒體掃描
學術會議
相關圖片
20200812104327.jpg
W020200124315612629474.jpg
現在位置: 首頁 > 新聞中心 > 科研動態
【Science Advances】柔性多功能觸覺傳感器
發表日期: 2020-08-28 文章來源:
打印 字體大小: 關閉
  

研究背景

        隨著科學技術的發展,人類正在步入智能時代。當下基于人工智能技術的可穿戴傳感器正在深刻的改變人類的生活方式。在過去的十年中,仿照人類皮膚的觸覺功能,研究人員開發了多種柔性傳感器以及電子皮膚器件,其目標是獨立人體之外模擬人類皮膚的觸覺功能,并應用于智能機器人、健康監測等領域。現有的柔性傳感器已經可以出色的實現壓力和溫度的感知,然而對于材料的識別仍面臨眾多問題。因此,發展多功能柔性傳感器,實現對接觸物體的材料識別成為當前的一個重要的發展方向。

        摩擦納米發電機(Triboelectric nanogenerator, TENG)通過摩擦起電和靜電感應可以實現將機械能轉化為電能,為解決材料識別問題提出了重要的思路。由于不同材料表面相互接觸后產生的靜電感應電荷量不同,通過分析感應電流的不同,可以實現對材料屬性的判別。然而,兩種材料接觸的壓力、溫度和頻率也會對摩擦信號產生影響,為此,需要通過開發新型的器件結構、新的敏感傳導機制來滿足單一柔性傳感器對壓力、溫度和材料的分別感知和識別。

文章概述

        近日,在中國科學院北京納米能源與系統研究所王中林院士和楊亞研究員的指導下,汪洋、武鶴婷和徐林等研究人員完成了一種可以實現壓力、溫度和材料識別的柔性多功能傳感器。該工作提出了一種類似三明治結構的柔性傳感器。該傳感器采用疏水的聚四氟乙烯薄膜作為介電層,利用兩片覆蓋銀納米線的銅片作為電極,通過類似海綿的聚二甲硅氧烷和石墨烯的導電復合材料作為壓力和溫度的響應組件。通過對導電復合材料中石墨烯的優化,傳感器的壓力靈敏度可以達到15.22 kPa-1,響應時間小于74毫秒,同時傳感器經過3000次循環測試后任可以穩定工作。在溫度刺激的情況下,傳感器通過熱電效應可以實現1 K的溫度傳感分辨率。基于不同接觸材料與疏水聚四氟乙烯薄膜產生的電信號以及研究人員提出的查表算法,該傳感器可以有效對接觸材料進行判別。該多功能傳感器具有成本低、材料識別等優點,為應對多功能器件的挑戰提供了一種設計思路。該工作以“Hierarchically patterned self-powered sensors formultifunctional tactile sensing” 為題發表在Science Advances上。

圖文導讀


1. 多功能傳感器的結構和工作原理。(A)傳感器在人手指上對外界感知示意圖以及單獨傳感器的示意圖。(B)傳感器各部件的光學圖。(C)疏水聚四氟乙烯的掃描電鏡圖。(D)聚二甲硅氧烷和石墨烯復合導電材料的掃描電鏡圖。(E)銀納米線的掃描電鏡圖。(F)當復合材料分別承受壓力和溫度梯度時,石墨烯/ PDMS復合材料的模擬應變場(左)和電勢(右)。(GPTFE與物體接觸時的電位。 

        1AB)顯示了多功能觸覺傳感器的示意圖和光學圖像,傳感器設計包括兩個垂直堆疊的部件實現獨立識別壓力,溫度和材料特性。掃描電子顯微鏡(SEM)圖像(圖1C)顯示了疏水薄膜孔隙的尺度。 右上角的薄膜與水接觸角(WCA)顯示為152°,右下角的滑動角度(SA)為28°。如圖1 D所示,導電復合材料具有相互連通的孔,平均孔徑約為200微米。圖1 E顯示制備的銀納米的直徑約為110 nm。傳感器的壓力傳感機器如圖1 F(左)所示。根據對于熱電效應。當傳感器接觸熱的物體時,傳感器顯示出溫度感應,如圖1 F(右)所示。為了實現材料識別,傳感器利用了摩擦起電和靜電感。當物體與疏水的聚四氟乙烯薄膜接觸-分離時,材料間會產生電勢(圖1G)。


2.傳感器的壓力和溫度的響應電特性。(A)壓力響應測試圖。(B)傳感器在不同壓力下的I-V測試圖。(C)傳感器在不同壓力范圍的靈敏度。(D)傳感器的壓力和電信號的輸出圖。(E)傳感器的響應時間測試。(F)電流隨壓力單調增加。(G)溫度響應測試圖。(H)不同溫差下傳感器的I-V測試圖。(I)傳感器的溫度響應時間測試。(J)測得的輸出電壓與溫度梯度的關系。(K)傳感器兩端的溫度梯度曲線。(L)對應溫度梯度的輸出電信號。 

        2顯示了在不同壓力和溫度刺激下傳感器的電信號。圖2 A為測試壓力響應的示意圖。圖2 B 顯示了導電復合材料和電極間良好的歐姆接觸。傳感器在低的壓力范圍內具有更高的壓力靈敏度,如圖2 C所示。傳感器具有小的遲滯,如圖2 D所示。圖2 E 表明傳感器在外部壓力刺激下具有快速的響應和恢復時間。圖2 F表明隨著壓力增加,器件具有穩定連續的響應特性。圖2 G為溫度響應測試圖。圖2 H表明隨著溫度梯度增加,器件的I-V曲線發生連續的漂移。圖2 I顯示了傳感器具有快速的溫度響應。圖2 J輸出顯示電壓與溫度梯度的關系。圖2 KL分別顯示了傳感器兩端的不同溫度梯度以及相對應產生的輸出電壓。

 

3.摩擦納米發電機信號以及物體識別。(A)摩擦信號測試圖。(B)聚四氟乙烯與FEP薄膜摩擦輸出電壓。(C)不同壓力下摩擦發電機的輸出電壓。(D)不同頻率的的輸出電壓。(E)分離間距對摩擦信號的影響。(F)溫度對摩擦信號的影響。(G)不同材料與薄膜接觸后的輸出電壓。(HAcrylic材料信號的放大曲線。(IFEP 材料信號的放大曲線。(J)不同材料摩擦信號統計。(K)接觸材料的識別過程圖 

        3 A為摩擦信號測試圖。圖3 B顯示聚四氟乙烯薄膜和FEP膜接觸后產生的輸出電壓信號。隨著壓力的增大,輸出電壓增大,如圖3 C所示。圖3 D表明,摩擦發電機在高頻情況下,輸出電壓提高明顯。圖3 E 顯示了不同分離距離對輸出電壓信號的影響。在一定的溫度范圍內,摩擦發電機的輸出電壓保持穩定,如圖3 F所示。圖3 G表明在一定的壓力下,不同材料產生的輸出電壓明顯不同。圖3 H I分別為兩種材料輸出電壓信號的放大圖。圖3 J表明,FEP薄膜產生的輸出電壓最大。 

4.傳感器應用。(A)傳感器固定在人手指上。(B)傳感器的表面溫度。(C)光學圖像顯示傳感器控制水滴用于生物醫學應用。(D)傳感器接觸熱杯,不同壓力刺激下的電流變化的圖。(E)傳感器的溫度響應的電流變化的圖。(F)圖像顯示手指與杯子接觸并釋放的操作,以及產生的摩擦電壓信號。 

        傳感器通過雙面膠帶固定在人的手指上,如圖4 A所示。 圖4 B表明,傳感器表面溫度低于手指的溫度。通過傳感器,研究人員可以控制液滴并對其研究,如圖4 C所示。壓力傳感器可以感知到施加在杯子上的壓力,如圖4 D所示。同時,傳感器也可以探測水杯的溫度,如圖4 E所示。另外,當傳感器與物體接觸-分離時,摩擦發電機可以產生響應的電信號,從而對物體材料進行判別,如圖4 F所示。

結論

        本研究提出了一種制備多功能傳感器的簡單方法。利用制備的導電復合材料的壓阻效應和熱電效應,傳感器可以分別實現壓力和溫度的響應的測量。通過摩擦起電和靜電感應原理,傳感器可以對接觸材料進行識別。制備的傳感器可以應用于智能機器人、仿生假肢健康監測與人際接口等領域。

相關論文

1. R. S. Johansson, J. R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

2. Z. L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energ. Environ. Sci. 8, 2250–2282 (2015)

 

評 論
 
  版權所有:中國科學院北京納米能源與系統研究所 Copyright 2020
地址:北京市懷柔區雁棲經濟開發區楊雁東一路8號院 郵編: 101400
A级毛片免费观看网站-日本欧美色29禁毛片大片